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We discuss how the effective parameters characterising averaged motion in nonlinear
systems are affected by noise (random fluctuations). In this approach to stochastic
dynamics, the stochastic system is replaced by its deterministic equivalent but with
noise-dependent parameters. We show that it can help to resolve certain paradoxes
and that it has a utility extending far beyond its usual application in passing from the
microscopic equations of motion to the macroscopic ones. As illustrative examples,
we consider the diode-capacitor circuit, a Brownian ratchet, and a generic stochastic
resonance system. In the latter two cases we calculate for the first time their effective
parameters of averaged motion as functions of noise intensity. We speculate that many
other stochastic problems can be treated in a similar way.
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1. INTRODUCTION

Consideration of fluctuation-induced changes in the effective parameters of aver-
aged motion can provide an effective way of calculating the effect of noise on a
nonlinear system. In what follows, we obtain noise-dependent effective parameters
for two problems of topical interest: Brownian ratchets and stochastic resonance.
The underlying idea is novel in the sense that physicists do not normally approach
noisy systems in this way. At the same time, however, there is a sense in which the
idea is a very old one. As a classical example, we note that the Stokes force in the
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Langevin equation for a Brownian particle (1) arises from noise-induced changes
in the effective parameters of averaged motion: this force is caused by collisions
of the Brownian particle with the molecules of the surrounding gas, and these
collisions can of course be considered as noise.

This approach lies at the root of statistical mechanics, which is the only place
where physicists normally encounter it. The central result is that the equations of
averaged motion are irreversible, whereas the initial equations describing motion
at the molecular level are reversible (Hamiltonian). The main contribution to the
solution of this problem was by Boltzmann(2) who showed how to obtain equations
describing irreversible processes starting from reversible Hamiltonian mechanics.
However, the Boltzmann theory is valid only for ideal gas, because he took into
account only paired molecular collisions. As a result, his equation describes the
effect of the molecular collisions only on the dissipative processes responsible for
the establishment of equilibrium state, but not on averaged characteristics such
that pressure, internal energy and so on. As distinct from the Boltzmann equation,
the Bogolyubov method allows one to do this, at least in principle. The problem
was solved more exactly by Klimontovich(1) and later explored through analogue
simulation(3) using electronic circuit models. (4)

One can readily identify a number of cases where changes in the effective
parameters of averaged motion manifest in macroscopic physics; the concept is not
restricted to its conventional application in passing from the microscopic equations
to the macroscopic ones. As one example, we mention turbulent jets. It is known
that within the initial part of the jet the thickness of the boundary layer increases
with increasing distance from the nozzle. (5) One of the first theories explaining
this fact was due to Prandtl, (6) who introduced the notion of the turbulent viscosity
νturb caused by turbulent pulsations, here regarded as noise. It depends on the
distance from the nozzle and can be written approximately as

νturb = aδ(x)�U,

where δ(x) is the boundary layer thickness, �U is the velocity difference in the
boundary layer region, and a is a coefficient of proportionality. Many results ob-
tained by use of this formula gave good agreement with experiments. Landau
noted, (7) however, that due to the presence of arbitrary parameters, e.g. a, other
expressions for the turbulent viscosity can also give good agreement with ex-
periment which is why in our own earlier work(5) on jet turbulence we did not
use the notion of turbulent viscosity. However, from our theoretical results we
can estimate the ratio between the turbulent (νturb) and kinematic (ν) viscosities.
For a Reynolds number of 25000, at the end of the jet’s initial part νturb/ν was
found to be ∼100 which agrees in order of magnitude with Landau’s formula
νturb ∼ νRe/Recr, where Recr is the critical Reynolds number. (7) For submerged
jets Recr ∼ 100.
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We mention also a paradox related to turbulence. First described by Prandtl,
(8) and then studied by Ginevsky and Kolesnikov, (9) it takes the following form.
Numerous observations show that a barge travelling with the stream of a river
passes ahead of the stream to such an extent that it may be steered with a rud-
der. Prandtl’s explanation of this paradox relies on the formation of a turbulent
boundary layer around the barge, possessing a smaller turbulent viscosity than
surrounding water and, therefore, exhibiting a smaller resistance to barge motion.
Ginevsky and Kolesnikov calculated the magnitude of this effect and showed that
the barge velocity should be about half as much again as the stream velocity. So,
the resolution of this seeming paradox lies in the strong effect of random turbulent
pulsations on the resistance force.

Another problem where changes in the effective parameters of averaged
motion in systems with noise play a crucial role is a seeming paradox related to the
possibility of realizing Maxwell’s demon in an electrical circuit. During the 1950s a
great debate took place, involving many physics journals,(10–14) aimed at resolving
an apparent paradox associated with the simplest electrical rectifier circuit (Fig. 1)
consisting of a capacitor and diode. It was shown(11,12) that in such a circuit the
capacitor can be charged without an external source, only at the expense of thermal
fluctuations, i.e. the diode plays the role of Maxwell’s demon. This paradoxical
result seemed to cast doubt on the validity of the Second Law of Thermodynamics
as applied to the phenomenon considered. (14) As far back as 1950, Brillouin (10)

showed, by considering the diode as a nonlinear resistor, that validity of the Second
Law would require a shift of the voltage-current characteristic of the nonlinear
resistor. Stratonovich(15) established that, for a certain model of the diode, such
a shift does indeed occur and he calculated its magnitude. Consequently, for the
particular case of thermal fluctuations, the mean value of the voltage drops across
the capacitor and the mean current in the circuit vanishes. The resolution of this
paradox may be considered as a concrete example of passing from the microscopic
equations to the macroscopic ones in the equilibrium case, resulting in a change of

CD

Fig. 1. Schematic image of an electrical rectifier.
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the voltage-current diode characteristic. Note that a very similar problem, albeit
for a mechanical rectifier (ratchet and pawl) was solved by Feynman. (16)

Finally, we mention a third problem where noise-induced changes of the
effective parameters of averaged motion are of fundamental importance, that of
stochastic resonance (SR) where a weak periodic signal in a nonlinear system can
be optimally amplified by the addition of noise of the appropriate intensity. In the
high-noise, weak-signal limit, SR is well-approximated by linear response theory,
using a susceptibility derivable from the fluctuation dissipation theorem. (17) Many
authors, (18,19) however, have treated SR as a coincidence of the signal period
T = 2π/ω and doubled mean first passage time through the potential barrier U0

Ttr = π√
2

exp

(
2U0

K

)
.

Three concerns may be raised in relation to the latter treatment: (i) resonance as
conventionally understood cannot occur in a system with only half a degree of
freedom, such as the overdamped oscillator usually considered; (ii) if the origin
of SR lies in the coincidence of some frequencies, than it should not be of any
importance how this coincident frequency is varied, but in an overdamped oscillator
the maximum of the signal, although a function of frequency, is not of a resonant
character (the response/drive ratio being a monotonically decreasing function of
frequency; and (iii) the variance of the jump frequency is very large, the mean
square value of the jump frequency is approximately equal to twice its mean. For
these reasons, Landa suggested an alternative approach, treating SR as a noise-
induced change in the system’s effective parameters. (20,21) It facilitates the creation
of a rigorous theory of SR, based on the single assumption that the signal is small.

There are numerous other cases of phenomena that can be well-described
in terms of noise-induced changes in effective parameters. For example, the pos-
sibility of noise-induced directed movement of a particle in a system without
any directional forces is readily be accounted for, as we shall see. This problem
may of course be solved by other ways too, e.g. by direct solution of the corre-
sponding Fokker–Planck equation. But its consideration from the viewpoint of the
noise-induced change of the force acting on the particle gives a better insight into
mechanism of this movement.

It should be noted that, in some respects, the problem under consideration
is similar to a phenomenon well-known in mechanics where the effective param-
eters of slow motion change under the action of high-frequency vibrations. (22)

We note also that one aspect of this problem was described in the Russian liter-
ature many years ago(23,24) through consideration of the effect of Gaussian noise
on different nonlinear elements. The authors applied the method of equivalent
linearization, (25,26) thereby finding the effective characteristics of these elements.

In reviewing the resolution of the diode-capacitor paradox in Sec. 2, we
follow the argument introduced by Stratonovich. (15) We consider a Brownian
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ratchet in Sec. 3 and SR in Sec. 4, in each case calculating for the first time the
noise-dependence of their effective parameters. Finally, in Sec. 5, we point out
that the phenomena observed in each of these diverse physical systems can be
well-described in terms of noise-induced changes in their parameters of averaged
motion. It is likely that the same type of approach will be widely applicable.

2. RESOLUTION OF A PARADOX ASSOCIATED WITH AN APPARENT

VIOLATION OF THE SECOND LAW OF THERMODYNAMICS

Let us consider the simplest relevant circuit composed just of a diode D and
capacitor C (Fig. 1). The voltage drop V across the capacitor is

CV̇ + I (V ) = 0, (1)

where I (V ) is the current flowing through the diode, and C is the total capacitance
of the diode and capacitor.

It is well known that, in thermal equilibrium, the probability distribution for
V is (27)

w(V ) =
√

C

2πkT
exp

(
− CV 2

2kT

)
, (2)

where k is Boltzmann’s constant and T is the temperature.
To find I (V ), we will assume the diode to be thermionic with two plane-

parallel electrodes: cathode and anode. It is known that in the space between the
electrodes there is a constant negative spacecharge generating an electric field
characterized by the potential U (x), where x is the distance from the cathode. The
qualitative dependence of the function −eU (x) on x , where −e is the electronic
charge, is illustrated in Fig. 2. We see that in the path of the electrons there is a
potential barrier of height equal to the maximum of −U (x), i.e. to −U (x0), where
x0 is the extreme point.

We assume the velocity distribution of the electrons to be Maxwellian. Only
those electrons whose energy exceeds −eU (x) can overcome the potential barrier.

0 d

-eU(x)

Fig. 2. Qualitative behavior of the function −eU (x), where −e is the charge of an electron, in the
absence of the potential difference between the electrodes.
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The other electrons return to the cathode. The fraction of electrons overcoming
the potential barrier ∝ exp(−eU (x0)/(kT )). It follows that, in the absence of the
potential difference, the currents flowing through the diode in each direction are
the same, and equal to

I+ = I− = I0 exp

(
− eU (x0)

kT

)
, (3)

where I0 is a constant with the dimensions of current.
If the potential difference between the electrodes is nonzero, then it must vary

with time owing to changes in the induced charge on the electrodes. For example,
if an electron has left the cathode and is at the point x (where 0 < x < d, and
d is the distance between the electrodes), then the charge on the anode and the
potential difference are

Q1(x) = Q − ex

d
, V1(x) = V − ex

Cd
, (4)

where V = Q/C .
When an electron moving in the opposite direction reaches the same point x ,

the charge on the anode and the potential difference are

Q2(x) = Q + e(d − x)

d
, V2(x) = V + e(d − x)

Cd
. (5)

It is evident that in the first case the force acting on the electron is

F1(x) = e
∂U (x)

∂x
+ eV

d
− e2x

Cd2
, (6)

whereas in the second case it is

F2(x) = e
∂U (x)

∂x
+ eV

d
+ e2(d − x)

Cd2
. (7)

The extreme points x1 and x2 can be found from the equations

F1(x1) = 0, F2(x2) = 0. (8)

Noting that U (0) = U (d) = 0 and integrating (6) over x from x = 0 to x = x1

and (7) from x = d to x = x2, we can calculate the height of the potential barrier
in each case:

U1 = − 1

e

x1∫
0

F1(x) dx = −U (x1) − V
x1

d
+ e2x2

1

2Cd2
,

(9)

U2 = − 1

e

x2∫
d

F2(x) dx = −U (x2) + V
d − x2

d
+ e2(d − x2)2

2Cd2
.
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By analogy with (3) we find

I+ = I0 exp

(
− eU1

kT

)
, I− = I0 exp

(
−eU2

kT

)
. (10)

The total current is thus equal to

I (V ) = I0

[
exp

(
− eU1

kT

)
− exp

[
− eU2

kT

)]
. (11)

Substituting (9) into (11) we find

I (V ) = I0

[
exp

(
− eU (x1)

kT
+ ex1

kT d
V − e2x2

1

2kT Cd2

)

− exp

(
− eU (x2)

kT
− e(d − x2)

kT d
V − e2(d − x2)2

2kT Cd2

)]
. (12)

For simplicity, we assume that the forces F1 and F2 are approximately the same
and given by

F1 ≈ F2 ≈ e
∂U (x)

∂x
.

In this case x1 and x2 are approximately coincident, independent of V and equal
to x0. Hence

I (V ) ≈ I00

[
exp

(
ex0

dkT
(V − V01)

)
− exp

(
− e(d − x0)

kT d
(V + V02)

)]
, (13)

where I00 = I0 exp(−eU (x0)/(kT )),

V01 = ex0

2Cd
, and V02 = e(d − x0)

2Cd
. (14)

It is seen from (13) that I (V ) = 0 for

V = V0 = x0V01 − (d − x0)V02

d
, (15)

i.e. the dependence of the current on the potential difference V is displaced from
the origin (I (0) �= 0). Only for x0V01 = (d − x0)V02 is the displacement absent.
But in this case the system under consideration would not act as a rectifier.

This displacement of the diode voltage-current characteristic is precisely
what results in the vanishing of the mean current flowing through the diode, and
of the voltage, as required by the Second Law of Thermodynamics. We can find
the actual mean current from (2), which yields:

〈I (V )〉 = I00

√
C

2πkT

∞∫
−∞

[
exp

(
ex0

dkT
(V − V01)

)
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− exp

(
− e(d − x0)

dkT
(V + V02)

)]
× exp

(
− CV 2

2kT

)
dV

= exp

[
− ex0

dkT

(
V01 − ex0

2Cd

)]

− exp

[
− e(d − x0)

dkT

(
V02 − e(d − x0)

2Cd

)]
. (16)

Using (14) we then find that 〈I (V )〉 = 0, thereby resolving the paradox.

3. TRANSPORT OF A LIGHT PARTICLE IN A VISCOUS MEDIUM

WITH A SAW-TOOTH POTENTIAL UNDER THE INFLUENCE

OF HARMONIC AND RANDOM FORCES

The phenomenon of noise-induced transport of Brownian particles has at-
tracted considerable interest in recent years, for the most part in the context of
biological and chemical problems.(28–35) Consideration is most often restricted to
the so-called overdamped case where the motion of a light particle is described by
a first order differential equation of the form

ẋ = − f (x) + ζ (t) + ξ (t). (17)

Here f (x) is a periodic function of x possessing a certain asymmetry, ζ (t) is a
regular or random process, and ξ (t) is white noise modelling thermal fluctuations.
One of the simplest forms of f (x) corresponds to the saw-tooth potential U (x)
shown in Fig. 3 and is described by

f (x) =
{+a1 for nL < x < nL + x1,

−a2 for nL − x2 < x < nL,
(18)

where n = 0, ±1, ±2, . . ., and L = x1 + x2 is the period of the function f (x).
For simplicity we set

ζ (t) = B sin ωt. (19)

Fig. 3. An example of the saw-tooth potential.
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Usually this problem is solved by calculation of the flux of the probability. Here
we approach the problem in a different way, by finding the mean value of the force
f (x) acting on the particle.

Averaging Eq. (17) over the statistical ensemble and taking account of (19)
we obtain an equation for the averaged motion of the particle:

v(t) = −〈 f (x)〉 + B sin ωt. (20)

where v(t) = 〈ẋ〉 is the averaged particle velocity. Averaging (20) over time we
find

v(t) = −〈 f (x)〉. (21)

To find v(t) and 〈 f (x)〉, we write the Fokker–Planck equation corresponding to
the Langevin equation (17):

∂w

∂t
= ∂

∂x

(
( f (x) − B sin ωt)w(x, t) + K

2

∂w(x, t)

∂x

)
. (22)

Because f (x) is a periodic function of x , the probability density w(x, t) is also a
periodic function of x . Hence Eq. (22) need only be solved in the interval from
−x2 to x1.

Equation (22) can be conveniently rewritten as

∂w

∂t
= − ∂G(x, t)

∂x
, (23)

where

G(x, t) = −
(

K

2

∂w(x, t)

∂x
+ ( f (x) − B sin ωt)w(x, t)

)
(24)

is the probability flux.
Integrating Eq. (24) over x from −x2 to x1 and taking into account conditions

of periodicity and normalization for w(x, t) we find

〈 f (x)〉 = −
x1∫

−x2

G(x, t) dx + B sin ωt. (25)

It follows that the averaged force, as distinct from the initial force f (x), contains
both constant and periodic components.

To find G(x, t), we need to solve Eq. (22). As pointed out above, most re-
searchers use the so-called quasistatic approximation (also known as the adiabatic
approximation) to solve this equation, i.e. they neglect the term ∂w/∂t ; it is valid
for low frequencies ω. We will not use this approximation, but we restrict ourselves
to small amplitudes B.
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If B is sufficiently small we can seek a solution of Eq. (22) in expanded form
retaining terms of order up to B2:

w(x, t) = w0(x) + w1(x, t)B + w2(x, t)B2. (26)

Substituting (26) into Eq. (22) we obtain equations for w0(x, t), w1(x, t) and
w2(x, t):

K

2

dw0(x)

dx
+ f (x)w0(x) = −G0, (27)

∂w1

∂t
− ∂

∂x

(
f (x)w1(x, t) + K

2

∂w1(x, t)

∂x

)
+ dw0(x)

dx
sin ωt = 0,

(28)
∂w2

∂t
− ∂

∂x

(
f (x)w2(x, t) + K

2

∂w2(x, t)

∂x

)
+ ∂w1

∂x
sin ωt = 0,

where G0 is the probability flux in the zeroth order approximation with respect to
B.

Setting w1(x, t) = w1s(x) sin ωt + w1c(x) cos ωt , w2(x, t) = w20(x) we ob-
tain the following equations for w1s(x), w1c(x) and w20(x):

K

2

d2w1s(x)

dx2
+ d f (x)w1s(x)

dx
+ ωw1c(x) = dw0

dx
, (29)

K

2

d2w1c(x)

dx2
+ d f (x)w1c(x)

dx
− ωw1s(x) = 0,

(30)
K

2

dw20(x)

dx
+ f (x)w20(x) − w1s(x)

2
= −G2,

where G2 is the probability flux in the second order approximation with respect
to B.

The probability density w(x, t) must satisfy the conditions of continuity for
x = 0, periodicity, and normalization. These conditions are

w0(0−) = w0(0+), w0(−x2) = w0(x1), w1s(0−) = w1s(0+),

w1c(0−) = w1c(0+), w1s(−x2) = w1s(x1), w1c(−x2) = w1c(x1),

w20(0−) = w20(0+), w20(−x2) = w20(x1),
(31)

x1∫
−x2

w0(x) dx = 1,

x1∫
−x2

w1s(x) dx = 0,

x1∫
−x2

w1c(x) dx = 0,

x1∫
−x2

w20(x) dx = 0.



Changes of Effective Parameters 603

Taking account of (18), (31) and integrating Eq. (29) over x from −� to �,
where � → 0, we find the conditions for discontinuities in the derivatives of the
probabilities w1s(x) and w1c(x) at the point x = 0:

dw1s

dx

∣∣∣∣
x=0+

− dw1s

dx

∣∣∣∣
x=0−

= − 2(a1 + a2)

K
w1s(0),

(32)

dw1c

dx

∣∣∣∣
x=0+

− dw1c

dx

∣∣∣∣
x=0−

= − 2(a1 + a2)

K
w1c(0).

Integrating Eq. (29) over x from −x2 to x1, we find the relationships between the
derivatives of w1s(x) and w1c(x) at the points x1 and −x2:

dw1s

dx

∣∣∣∣
x=x1

− dw1s

dx

∣∣∣∣
x=−x2

= − 2(a1 + a2)

K
w1s(x1),

(33)

dw1c

dx

∣∣∣∣
x=x1

− dw1c

dx

∣∣∣∣
x=−x2

= − 2(a1 + a2)

K
w1c(x1).

So, to find w(x, t), it is necessary to solve Eqs. (27), (29), (31) with boundary
conditions (31), (32) and (33). For f (x) described by (18), these equations can be
solved exactly yielding the general solution

w0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
C0 + G0

a1

)
exp

(
− 2a1x

K

)
− G0

a1
for 0 < x < x1,

(
C0 − G0

a2

)
exp

(
2a2x

K

)
+ G0

a2
for −x2 < x < 0.

(34)

It follows from (31) that G0 = 0 and

C0 = 2
a1a2

a2 − a1

[
1 − exp

(
− 2U0

K

)]−1

, (35)

where U0 = a1x1 = a2x2 is the height of the potential barrier. The general solution
of Eq. (29) is

w1s(x) =
⎧⎨
⎩

w
(1)
1s (x) for 0 < x < x1,

w
(2)
1s (x) for −x2 < x < 0,

(36)

w1c(x) =
⎧⎨
⎩

w
(1)
1c (x) for 0 < x < x1,

w
(2)
1c (x) for −x2 < x < 0,
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where

w
(1)
1s (x) = −2Im[w11(x)], w

(2)
1s (x) = −2Im[w12(x)],

w
(1)
1c (x) = 2Re[w11(x)], w

(2)
1c (x) = 2Re[w11(x)],

w11(x) = C11 exp(k11x) + C21 exp(k21x) − C0a1

ωK
exp

(
− 2a1x

K

)
,

w12(x) = C12 exp(k12x) + C22 exp(k22x) + C0a2

ωK
exp

(
2a2x

K

)
, (37)

k11 = −
a1 +

√
a2

1 + 2iωK

K
, k21 = −

a1 −
√

a2
1 + 2iωK

K
,

k12 =
a2 −

√
a2

2 + 2iωK

K
, k22 =

a2 +
√

a2
2 + 2iωK

K
.

The complex constants C11, C21, C12 and C22 can be found from the conditions
(31), (32) and (33). They are proportional to C0 and take the form

C11 = F11(a1, a2, r1, r2, U0/K )C0, C12 = F12(a1, a2, r1, r2, U0/K )C0, (38)
C21 = F21(a1, a2, r1, r2, U0/K )C0, C22 = F22(a1, a2, r1, r2, U0/K )C0,

where U0 = a1x1 = a2x2 is the height of the potential barrier, F11, F21, F12 and
F22 are certain functions of their arguments.

It remains to find the general solution of Eq. (31). It is

w20(x) =
⎧⎨
⎩

w
(1)
20 (x) for 0 < x < x1,

w
(2)
20 (x) for −x2 < x < 0,

(39)

where

w
(1)
20 (x) = Q1 exp

(
− 2a1x

K

)
− G2

a1

−2Im

(
C11

K k11 + 2a1
exp(k11x) + C21

K k21 + 2a1
exp(k21x)

)
,

(40)

w
(2)
20 (x) = Q2 exp

(
2a2x

K

)
+ G2

a2

−2Im

(
C12

K k12 − 2a2
exp(k12x) + C22

K k22 − 2a2
exp(k22x)

)
.

Here G2 is the constant component of the probability flux in the second order
approximation with respect to B.
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From conditions (31) we obtain

G2(a1 + a2)

a1a2
= Q1 − Q2 − 2Im

(
C11

K k11 + 2a1
+ C21

K k21 + 2a1

− C12

K k12 − 2a2
− C22

K k22 − 2a2

)
,

(Q1 − Q2) exp

(
− 2U0

K

)
− G2

a1
− G2

a2
− 2Im

[
C11 exp(k11x1)

K k11 + 2a1

+C21 exp(k21x1)

K k21 + 2a1
− C12 exp(−k12x2)

K k12 − 2a2
− C22 exp(−k22x2)

K k22 − 2a2

]
= 0,

K

2

(
Q1

a1
+ Q2

a2

) [
1 − exp

(
− 2U0

K

)]
+ 2Im

[
C11(1 − exp(k11x1))

(K k11 + 2a1)k11

+C21(1 − exp(k21x1))

(K k21 + 2a1)k21
− C12(1 − exp(−k12x2))

(K k12 − 2a2)k12

−C22(1 − exp(−k22x2))

(K k22 − 2a2)k22

]
− G2

(
x1

a1
− x2

a2

)
= 0. (41)

Solving Eqs (41) we find

G2 = − 2a1a2

a1 + a2

[
1 − exp

(
− 2U0

K

)]−1

Im

{
C11

K k11 + 2a1

[
exp(k11x1)

− exp

(
− 2U0

K

)]
+ C21

K k21 + 2a1

[
exp(k21x1) − exp

(
− 2U0

K

)]

− C12

K k12 − 2a2

[
exp(−k12x2) − exp

(
− 2U0

K

)]

− C22

K k22 − 2a2

[
exp(−k22x2) − exp

(
− 2U0

K

)]}
. (42)

Examples of the dependences of V = v/B2 = G2L on K/U0 are shown in
Fig. 4 for a1 = 1.25, a2 = 5, x1 = 0.8, x2 = 0.2 and different values of the fre-
quency ω. Comparing these results with those found by use of quasi-stationary
approximation(20) we see that they nearly coincide for ω ≤ 0.5. For most values
of ω the mean particle velocity decreases and its maximum is shifted only weakly
in the direction of larger values of K/U0.
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Fig. 4. The dependences of V = v/B2 = G2 L on K/U0 for a1 = 1.25, a2 = 5, U0 = 1 and (top-
down) ω = 0.1, 0.5, 1, 2, 3, 4 and 5.

4. STOCHASTIC RESONANCE

4.1. Stochastic Resonance in an Overdamped Oscillator

In stochastic resonance, a signal (usually a weak periodic one) in a nonlin-
ear system can be optimally enhanced by the addition of noise of appropriate
intensity. The phenomenon has been considered for a very wide range of physical
situations, (36,37) including systems with either bistable or monostable potentials,
undergoing motion that can be either underdamped or overdamped. Most often it
has been considered in relation to the overdamped motion of a light particle in the
simplest bistable potential field disturbed by a weak periodic signal and additive
white noise: (18,38)

ẋ + x3 − x = A cos ωt + ξ (t), (43)

where x is the particle displacement, A cos ωt is the weak periodic signal at
frequency ω, ξ (t) is white noise of intensity K , i.e. 〈ξ (t)ξ (t + τ ) = K δ(τ ). Use
of this particular example (43) makes it difficult to identify the influence of the
damping factor, however, so in the present work we will consider instead the
system

2δ ẋ + x3 − x = A cos ωt + ξ (t), (44)

where δ is the damping factor.
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The treatment of stochastic resonance as a noise-induced change in the sys-
tem’s effective parameters was first considered by Landa. (20,21) We now generalise
the main results of these works to be applicable to Eq. (44).

It follows from(39) that the power spectra of a solution of Eq. (44) contain
both discrete frequency components (odd harmonics of the frequency ω) and
continuous components caused by noise. We can therefore represent x(t) in the
form

x(t) = s(t) + n(t), (45)

where

s(t) = 〈x(t)〉 =
∞∑

k=0

B2k+1 cos((2k + 1)ωt + ψ2k+1), 〈n(t)〉 = 0. (46)

We will refer to the ratio of B1 to A as the gain factor and denote it as Q(K ).
Further we substitute (45) into Eq. (44) and split it into two equations, of

which one describes the quantities averaged over the statistical ensemble and the
other describes the deviations from those averaged values. Since at s = 0 all odd
moments of the noise m j = 〈n j 〉 are equal to zero, in the first approximation with
respect to s, we can set m3 = as + bṡ, where a and b are unknown functions of K
and ω that will be found later. We therefore write the equations for s(t) and n(t) as

(2δ + b)ṡ + cs + s3 = A cos ωt, (47)

2δṅ + (3s2 − 1)n + n3 + (3n2 − 1 − c)s − bṡ = ξ (t), (48)

where

c = 3m2 − 1 + a (49)

is the effective stiffness, and b is the addition to the damping factor caused by
noise.

We emphasize that such a splitting of the initial equation into two equations is
similar to the separation of motions into slow and fast ones suggested in ref. 22 and
used in refs. 40, 41 for calculations of vibrational resonance. The difference here
is that we separate the motions, not into slow and fast, but into regular (averaged)
and random parts.

To calculate the moments m j and find a and b, we use the Fokker–Planck
equation corresponding to the Langevin equation (48). In a linear approximation
with respect to s(t) it is

2δ
∂w

∂t
= ∂

∂n
[(n3 − n + (3n2 − 1 − c)s − bṡ) w] + K

4δ

∂2w

∂n2
. (50)

It is convenient to seek a solution of Eq. (50) in the form of a sum of three
components, of which w0 is the main one; the other two, w1 and w2, are small in
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comparison with w0. Introducing a conventional small parameter ε and assuming
s ∼ ṡ ∼ ε, we set

w(n, t) = w0(n) + ε

(
w1(n)s + w2(n)

ω
ṡ

)
. (51)

Because in the linear approximation s(t) is a harmonic signal of frequency ω, we
have s̈(t) = −ω2s(t). Taking this into account, substituting (51) into Eq. (50) and
restricting ourselves to terms of the first order with respect to ε, we obtain the
following equations for the components in question:

K

4δ

∂w0

∂n
+ (n3 − n)w0 = 0, (52)

2δωw1 − d

dn

(
(n3 − n)w2 + K

4δ

dw2

dn

)
= −ωb

dw0

dn
,

2δωw2 + d

dn

(
(n3 − n)w1 + K

4δ

dw1

dn

)
= − d

dn
[(3n2 − 1 − c)w0]. (53)

It can be seen from Eqs. (52), (53) that w0(n) is an even function of n, whereas
we can seek w1(n) and w2(n) as odd functions of n. In so doing we have

∞∫
−∞

w1,2(n) dn = 0, (54)

∞∫
−∞

n2w0(n) dn = m2. (55)

It follows from (54) that the normalization condition for the probability w(n, t)
becomes

∞∫
−∞

w0(n) dn = 1. (56)

The conditions 〈n〉 = 0 and 〈n3〉 = as + bṡ lead to

∞∫
−∞

nw1(n) dn = 0,

∞∫
−∞

nw2(n) dn = 0,

(57)
∞∫

−∞
n3w1(n) dn = a,

∞∫
−∞

n3w2(n) dn = ωb.
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Solving Eq. (52) we find w0(n):

w0(n) = C exp

(
− δ(n4 − 2n2)

K

)
, (58)

where C is the normalization factor. Substituting (58) into (55) we find m2 as a
function of K and δ.

An odd solution of Eq. (53) can be written as

w1(n) = C1w11(n) + C2w12(n) + w10(n) + w1c(n)c + w1b(n)ωb,
(59)

w2(n) = C1w21(n) + C2w22(n) + w20(n) + w2c(n)c + w2b(n)ωb,

where w11(n), w21(n) and w12(n), w22(n) are two fundamental partial solutions of
homogeneous Eq. (55) satisfying the conditions

w11(0) = 0, w21(0) = 0,
dw11(0)

dn
= 1,

dw21(0)

dn
= 0,

(60)

w12(0) = 0, w22(0) = 0,
dw12(0)

dn
= 0,

dw22(0)

dn
= 1,

C1 and C2 are arbitrary constants, and w10(n), w1c(n), w1b(n), w20(n), w2b(n) and
w2c(n) are described by the equations

2δωw10 − d

dn

(
(n3 − n)w20 + K

4δ

dw20

dn

)
= 0,

2δωw20 + d

dn

(
(n3 − n)w10 + K

4δ

dw10

dn

)
= n

(
4(3n2 − 1)(n2 − 1)δ

K
− 6

)
w0(n),

2δωw1c − d

dn

(
(n3 − n)w2c + K

4δ

dw2c

dn

)
= 0, (61)

2δωw2c + d

dn

(
(n3 − n)w1c + K

4δ

dw1c

dn

)
= − 4n(n2 − 1)δ

K
w0(n),

2δωw1b − d

dn

(
(n3 − n)w2b + K

4δ

dw2b

dn

)
= 4n(n2 − 1)δ

K
w0(n),

2δωw2b + d

dn

(
(n3 − n)w1b + K

4δ

dw1b

dn

)
= 0.

Equation (61) should be solved with zero initial conditions.
The equations for the unknown parameters a, b, c, and arbitrary constants C1

and C2 follow from (57), (59) and (49):

J11C1 + J12C2 + J10 + cJ1c + ωbJ1b = 0,

J21C1 + J22C2 + J20 + cJ2c + ωbJ2b = 0, (62)
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I11C1 + I12C2 + I10 + cI1c + ωbI1b = c + 1 − 3m2,

I21C1 + I22C2 + I20 + cI2c + ωbI2b = ωb,

where

Ji j =
∞∫

−∞
nwi j (n) dn, Ii j =

∞∫
−∞

n3wi j (n) dn.

These equations allow us to find the effective stiffness c, and the addition to
damping factor b, as functions of K and δ.

The dependences of c, ωb, and a on the noise intensity K for δ = 0.5 and
different values of the signal frequency ω are shown in Fig. 5. To clarify the effect
of the damping factor we construct the same dependences for ω = 0.1 and three
values of δ (δ = 0.25, δ = 0.5 and δ = 1), see Fig. 6. It is seen that with increasing
δ all curves are displaced to larger values of the noise intensity and the maximal
value of the correction to the damping factor slightly decreases.
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Fig. 5. The dependences of c, ωb and a on the noise intensity K for δ = 0.5 and ω = 0.0001 (curves 1),
ω = 0.01 (curves 2), ω = 0.05 (curves 3) and ω = 0.1 (curves 4).
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Fig. 6. The dependences of c, ωb and a on the noise intensity K for ω = 0.1 and δ = 0.25 (curves 1)
and δ = 0.5 (curves 2).

4.2. Stochastic Resonance in the Case of a Particle of Small Mass

Moving in the Simplest Bistable Potential Field

We consider the underdamped motion of a particle described by the equation

µ2 ẍ + 2δ ẋ + x3 − x = A cos ωt + ξ (t), (63)

where µ2 is a small parameter proportional to the particle mass.
As before, we represent the solution of Eq. (63) as a sum of the signal

s(t) = 〈x(t)〉 and noise n(t). It is evident that the mean value of noise must be
equal to zero, whereas the third moment can differ from zero in the presence of
a signal. In the linear approximation with respect to s(t) we obtain the following
equations for s(t) and n(t):

µ2s̈ + (2δ + b)ṡ + cs = A cos ωt, (64)

µ2n̈ + 2δṅ + n3 − n + (3n2 − 1 − c)s − bṡ = ξ (t), (65)

where the effective stiffness c is described by (48).
An equation of the same kind as (65), but with coefficients independent of

time and with 2δ = 1, was considered by Stratonovich. (39) By analogy with, (39)

Eq. (65) may be conveniently rewritten in the form of two following Langevin
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equations:

µṅ = y, µẏ = − 2δ

µ
y − n3 + n − (3n2 − 1 − c)s + bṡ + ξ (t). (66)

The two-dimensional Fokker–Planck equation corresponding to Eq. (66) is

∂w

∂t
= − 1

µ

(
y

∂w

∂n
+ [n − n3 − (3n2 − 1 − c)s + bṡ]

∂w

∂y

)

+ 1

µ2

(
2δ

∂(yw)

∂y
+ K

2

∂2w

∂y2

)
. (67)

Representing the solution of Eq. (67) as a sum of three components

w(n, y, t) = w0(n, y) + w1(n, y)s(t) + w2(n, y)ṡ(t)

ω
, (68)

for w0(n, y), w1(n, y) and w2(n, y) we obtain the following equations:

(
2δ

∂(yw0)

∂y
+ K

2

∂2w0

∂y2

)
− µ

(
y

∂w0

∂n
− (n3 − n)

∂w0

∂y

)
= 0, (69)

2δ
∂(yw1)

∂y
+ K

2

∂2w1

∂y2
− µ

(
y

∂w1

∂n
− (n3 − n)

∂w1

∂y
− µωw2

)

= −µ(3n2 − 1 − c)
dw0

dy
,

(70)

2δ
∂(yw2)

∂y
+ K

2

∂2w2

∂y2
− µ

(
y

∂w2

∂n
− (n3 − n)

∂w2

∂y
+ µωw1

)
= µωb

dw0

dy
.

As shown in ref. 39, a solution of Eq. (69) can be found by setting to zero each of
the terms in parentheses. We thus find

w0(n, y) = C0 exp

[
− 4δ

K

(
y2

2
+ u(n)

)]
, (71)

where u(n) = n4/4 − n2/2, and C0 is the normalization constant. It should be
emphasized that w0(n, y) is independent of the parameter µ.

To find the unknown parameters c and b, it is necessary to calculate the
probability distributions

v1,2(n) =
∞∫

−∞
w1,2(n, y) dy. (72)
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To do this, we solve Eq. (70) by expansion in eigenfunctions Ym(y) of the boundary
value problem described by the equation

K

4δ

d2Y

dy2
+ d(yY )

dy
+ λY = 0 (73)

with boundary conditions Y (±∞) = 0. We note that each of Eq. (70) for µ = 0
reduces to Eq. (73) with λ = 0.

As discussed earlier in refs. 39 and 20, the eigenvalues λm = m, and the
eigenfunctions Ym(y) can be expressed in terms of Hermite polynomials Hm(z) as

Ym(y) = (−1)m

√
2δ

π K 2mm!
exp

(
− 2δy2

K

)
Hm

(
y

√
2δ

K

)
. (74)

The functions Ym(y) must satisfy the following conditions of orthogonality and
normalization:

∞∫
−∞

Ym(y)Yl (y)

Y0(y)
dy = δml, (75)

where δml is the Kronecker delta. In addition, the following relationships follow
from the properties of Hermite polynomials: (20)

∞∫
−∞

Ym(y) dy = δm0, (76)

dYm(y)

dy
=

√
4δ(m + 1)

K
Ym+1(y),

yYm(y) = −
√

K

4δ
(
√

m + 1Ym+1(y) + √
mYm−1(y)), (77)

d(yYm(y))

dy
= −(

√
(m + 1)(m + 2)Ym+2(y) + mYm(y)).

The expansion of the solution of Eq. (70) in terms of Ym(y) can be written as

w1(n, y) =
∞∑

m=0

v1m(n)Ym(y), w2(n, y) =
∞∑

m=0

v2m(n)Ym(y). (78)

Integrating (78) over y and using property (76) we find

v1(n) = v10(n), v2(n) = v20(n). (79)

It follows from here that for solution of our problem it is sufficiently to find the
functions v10(n) and v20(n).
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Substituting (78) into Eq. (70) and taking into account that

w0(n) = v0(n)Y0(y),

where

v0(n) = C exp

(
− 4δu(n)

K

)
, C =

√
πµK

2δ
C0,

we obtain
∞∑

m=0

(√
K

4δ
(
√

m + 1Ym+1(y) + √
mYm−1(y))

dv1m

dn

+
√

4δ(m + 1)

K
(n3 − n)Ym+1(y)v1m(n)

− 2δ

µ
mYm(y)v1m(n) + µωYm(y)v2m(n)

)

= −
√

4δ

K
(3n2 − 1 − c)Y1(y)v0(n), (80)

∞∑
m=0

(√
K

4δ
(
√

m + 1Ym+1(y) + √
mYm−1(y))

dv2m

dn

+ (n3 − n)

√
4δ(m + 1)

K
Ym+1(y)v2m(n)

)

− 2δ

µ
mYm(y)v2m(n) − µωYm(y)v1m(n)

=
√

4δ

K
ωbY1(y)v0(n).

Equating the terms of Ym(y) that have the same subscripts and setting m =
0, 1, 2, . . . we obtain the following equations:√

K

4δ

dv11

dn
+ µωv20 = 0,

√
K

4δ

dv21

dn
− µωv10 = 0,

√
K

4δ

(
dv10

dn
+

√
2

dv12

dn

)
+

√
4δ

K
(n3 − n) v10 − 2δ

µ
v11

(81)

+µωv21 = −
√

4δ

K
(3n2 − 1 − c)v0(n),
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√
K

4δ

(
dv20

dn
+

√
2

dv22

dn

)
+

√
4δ

K
(n3 − n) v20 − 2δ

µ
v21

−µωv11 =
√

4δ

K
ωbv0(n),

√
K

4δ

(√
j

dv1, j−1

dn
+

√
j + 1

dv1, j+1

dn

)

+
√

4 jδ

K
(n3 − n)v1, j−1 − 2 jδ

µ
v1 j + µωv2 j = 0 ( j ≥ 2), (82)

√
K

4δ

(√
j

dv2, j−1

dn
+

√
j + 1

dv2, j+1

dn

)

+
√

4 jδ

K
(n3 − n)v2, j−1 − 2 jδ

µ
v2 j − µωv1 j = 0 ( j ≥ 2).

Expanding v1m and v2m as power series in µ

v1m =
∞∑

k=0

µkv
(k)
1m, v2m =

∞∑
k=0

µkv
(k)
2m . (83)

Equating the coefficients of the same powers of µ and taking into account that

v
(2k+1)
10 = 0, v

(2k+1)
20 = 0, v

(2k)
11 = 0, v

(2k)
21 = 0, v

(l)
1 j = v

(l)
2 j = 0 ( j ≥ 2l),

we find from Eq. (81)

– For µ0:

ωv
(0)
10 −

√
K

4δ

dv
(1)
21

dn
= 0, ωv

(0)
20 +

√
K

4δ

dv
(1)
11

dn
= 0,

v
(1)
11 = 1

2δ

(√
K

4δ

dv
(0)
10

dn
+

√
4δ

K
(n3 − n)v(0)

10 +
√

4δ

K
(3n2 − 1 − c)v0(n)

)
, (84)

v
(1)
21 = 1

2δ

(√
K

4δ

dv
(0)
20

dn
+

√
4δ

K
(n3 − n)v(0)

20 −
√

4δ

K
ωbv0(n)

)
;



616 Landa, Neimark, and McClintock

– For µ2:

ωv
(2)
10 −

√
K

4δ

dv
(3)
21

dn
= 0, ωv

(2)
20 +

√
K

4δ

dv
(3)
11

dn
= 0,

v
(3)
11 = 1

2δ

[√
K

4δ

(
dv

(2)
10

dn
+ 4δ

K
(n3 − n)v(2)

10 +
√

2
dv

(2)
12

dn

)
+ ωv

(1)
21

]
, (85)

v
(3)
21 = 1

2δ

[√
K

4δ

(
dv

(2)
20

dn
+ 4δ

K
(n3 − n)v(2)

20 +
√

2
dv

(2)
22

dn

)
− ωv

(1)
11

]
,

v
(2)
12 =

√
2

4δ

(√
4δ

K
(n3 − n)v(1)

11 − ωv
(0)
20

)
,

(86)

v
(2)
22 =

√
2

4δ

(√
4δ

K
(n3 − n)v(1)

21 + ωv
(0)
10

)
;

– For µ4:

ωv
(4)
10 −

√
K

4δ

dv
(5)
21

dn
= 0, ωv

(4)
20 +

√
K

4δ

dv
(5)
11

dn
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v
(5)
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K
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dv
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K
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√

2
dv
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12

dn

)
+ ωv

(3)
21

]
, (87)
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)
− ωv
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]
,
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)
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]
,

v
(4)
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(
dv
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K
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√
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)
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]
,

(88)

v
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6δ

[√
3K
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√
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dv
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)
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]
,

v
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23 = 1

6δ

[√
3K
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(
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K
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√

4

3

dv
(2)
24

dn

)
− ωv

(1)
13

]
,



Changes of Effective Parameters 617

Equations (84)–(87) can conveniently be reduced to the following:

d2v
(0)
10

dn2
+ 4δ

K

(
(n3 − n)

dv
(0)
10

dn
+ (3n2 − 1)v(0)

10 + 2ωδv
(0)
20

)

= − 4δ

K

d

dn

(
(3n2 − 1 − c) v0(n)

)
, (89)

d2v
(0)
20

dn2
+ 4δ

K

(
(n3 − n)

dv
(0)
20

dn
+ (3n2 − 1)v(0)

20 − 2ωδv
(0)
10

)

= 4δ

K
ωb

dv0(n)

dn
,

d2v
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(√

2
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+ ω2 4δ

K
v
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)
, (90)
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)
,
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√
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)
, (91)

d2v
(4)
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(
(n3 − n)
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(4)
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dn
+ (3n2 − 1)v(4)
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(4)
10

)

= −
(√

2
d2v
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√
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K

d2v
(3)
11
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)
,

where v
(2)
12 , v

(2)
22 , v

(4)
12 and v

(4)
22 are described by Eqs. (86), (88).



618 Landa, Neimark, and McClintock

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.1 0.2 0.3 0.4

c

K

a

1 2 3

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4

ω
b

K

b

1 2

3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.1 0.2 0.3 0.4

a

K

c

1 2 3

Fig. 7. The dependences of c, ωb and a on the noise intensity K for ω = 0.1, δ = 0.5 and µ = 0
(curves 1), µ = 0.5 (curves 2) and µ = 1 (curves 3).

The conditions 〈n〉 = 0 and 〈n3〉 = as + bṡ are

∞∫
−∞

nv10(n) dn = 0,

∞∫
−∞

nv20(n) dn = 0,

(92)
∞∫

−∞
n3v10(n) dn = a,

∞∫
−∞

n3v20(n) dn = ωb.

These conditions, along with the normalization condition, allow us to find the
effective stiffness c and the addition to damping factor ωb as functions of K , δ

and µ.
The dependences of c, ωb and a on the noise intensity K for δ = 0.5, ω = 0.1

and µ = 0, µ = 0.5 and µ = 1 are shown in Fig. 7. It can be seen that these
parameters depend on the particle mass µ relatively weakly. Nevertheless, with
increasing µ all curves are displaced towards larger values of the noise intensity,
the minimum value of c increases, and the maximum value of ωb decreases.

5. CONCLUSION

By consideration of several physical examples we have shown that noise
may cause changes in the effective parameters of averaged motion in nonlinear
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systems. This change found can be construed as the origin of apparent resonance
phenomena in a system with only a half-degree-of-freedom, as seen in an over-
damped oscillator, in the directed motion of a particle in the absence of a directed
force, in the impossibility of Maxwell’s demon, in the motion of a barge or a raft
at a rate exceeding the stream velocity, and in many other interesting phenomena.
We emphasize that each of the problems considered can be, and in most cases
has been, analysed earlier using different theoretical techniques. These other ap-
proaches do not, however, allow us to find the change of the effective parameters of
averaged motion which explain the physical mechanisms of the phenomena under
consideration. We can reasonably speculate that the present approach, in terms
of noise-induced parameter changes, will be of wide applicability enabling quan-
titative analyses of a diverse range of stochastic phenomena to be encompassed
within a single, unified, conceptual framework.
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